Complexity Society

Is a Global Post-Critical Society Possible?

Anti terrorism


Every dynamical system possesses a characteristic value of complexity which reflects how information is organized and how it flows within its structure. Like most things in life, complexity is limited. In fact, there is an upper bound on complexity that a given system may attain and sustain with a given structure. This ‘physiological’ limit is known as critical complexity. In the proximity of its corresponding critical complexity every system becomes fragile and therefore vulnerable. This fragility is consequence of a very simple fact: critically complex systems possess a multitude of modes of behaviour and can suddenly jump from one mode to another. Very often, minute amounts of energy are sufficient to accomplish such mode transitions. Consequently, highly complex systems may easily develop surprising behaviour and are inherently difficult to understand and govern. For this very reason, humans prefer to stay away from situations that are perceived to be highly complex. In the vicinity of critical complexity, life becomes more risky precisely because of the inherent element of surprise.

In the past few years modern complexity science has developed comprehensive metrics and means of measuring not only the complexity of generic systems but also the corresponding critical complexity. This has enabled to turn the above intuitive rules into rational general principles which govern the dynamics and interplay of everything that surrounds us. The interaction of entropy and structure is the fundamental mechanism behind co-evolution and behind the creation of organized complexity in Nature. Higher complexity implies greater functionality and therefore higher ‘fitness’. However, extreme specialization – fruit of ‘evolutionary opportunism’ – comes at a high cost. Robust yet fragile is the hallmark of highly complex systems. Think of how creative the human species is and yet how fragile human nature is. Under highly uncertain and stressful conditions this fragility emerges with strength. But since human beings are the basic building blocks of societies, economies and nations, it is not difficult to understand why the complexity of our globalized and turbulent world assumes almost cosmological proportions. Fragility and volatility are words which best reflect the state of health of not only the global economy but also of the society in all of its aspects.

Our global society is ultimately a huge and dynamic network, composed of nodes and links. The connections between the nodes (individuals, corporations, markets, nations) are rapidly increasing in number, just as is the number of nodes. A fundamental feature of this network is entropy, which is a measure of uncertainty. Because the nodes do not always act in a rational and predictable fashion, the connections are “noisy”. Because the amount of entropy can only increase – this is due to the Second Law of Thermodynamics – while new connections are being created every day, many others are destroyed. This process is inevitable. The measure of complexity is a blend of the topology of the network and the amount of noise – entropy – contained within its structure. Consequently, there are two means of increasing complexity: adding more structure (connections, nodes or both), or, for a given network structure, increase the amount of noise.

In the past, the Earth was populated by numerous and disjoint civilizations that thrived almost in isolation. The Sumers, the Incas, or the Romans are just a few prominent examples. Because the temporal and spatial correlation between those civilizations was very limited, if one happened to disappear, many more remained. However, the Earth today is populated by one single globalized society. If this one fails, that’s it. But any form of progress is accompanied by an inevitable increase in complexity. This is true only until critical complexity is reached. In order to continue evolving beyond critical complexity, a civilization must find ways of overcoming the delicate phase of vulnerability in which self-inflicted destruction is the most probable form of demise.

When a society approaches critical complexity, it has the following alternatives in order to survive:
1.    Reduce its complexity. This is done by eliminating entropy or by simplifying its structure. In practice this translates to:

  • Stricter laws.
  • Less laws.
  • Reduction of personal freedom (limit migrations, birth control, etc.)

2.    Learn to live in proximity of critical complexity. This is  risky because the system is:

  • Extremely turbulent and volatile. Terrorism, crime and fraudulent behaviour thrive close to criticality.
  • Very difficult to govern – impossible to postulate and reach goals.
  • Unexpected behaviour may suddenly emerge.
  • On the verge of widespread violence.

3.    Increase its critical complexity. This may be accomplished in essentially two ways:

  • Creating more links (making a denser Process Map). However, this makes governing even more difficult.
  • Adding structure (nodes). Certainly the preferred option.
Option 2 is the most risky. Living in proximity of critical complexity cannot be accomplished in the framework of a conventional western-type democracy. The extreme turbulence which characterizes critically complex systems is most likely better dealt with in a technocratic and police-state context, which limits severely personal freedom. Only a government which understands how to actively manage complexity on a vast scale may venture into similar territory. Scenario 2 is certainly not desirable. A better approach, therefore, is to adopt a mix of 1 and 3.

Terrorism constitutes surely one of the major concerns of modern democracies. The number of terrorist attacks has more than tripled in recent years. In terms of location most instances of politically fuelled violence and terrorism may be found in Asia, not in the Middle East. In fact, our research shows that Asia enjoys a far greater complexity growth rate than the Middle East. Approximately one-fourth of trans-national politically motivated terrorist acts are inspired by religion. A similar amount is accounted for by leftist militant organizations. Nearly 40% of terror acts are perpetrated by nationalist and separatist groups. As expected, there is no single clear cause. A mix of factors, which ultimately lead to some form of social injustice, poverty, failing states or dysfunctional politics are what fuels terrorism. This suggests that the problem is indeed due to very high complexity. We are also painfully aware of the fact that modern democracies naturally lack efficient tools to effectively deal with highly complex socio-political-ethnical and religious problems, without neglecting the fundamental economical and ecological dimensions.

Where can terrorism develop with greater ease? Terrorists need to hide. For this reason they thrive in high-entropy environments, such as failing or rogue states, ghettos, where there is little social structure. It is in highly complex societies (doesn’t mean developed) that terror groups find geo-political sanctuaries. High complexity, as mentioned, comes in many forms:

  • Little structure but high entropy (Third World countries)
  • Much structure, low entropy (Western democracies)
  • Much structure, high entropy  (the future global society)

Terror groups generally prefer high entropy-dominated complexity because of the Principle of Incompatibility: high complexity implies low precision. This means that hunting them down – essentially an intelligence-driven exercise – is difficult because of lack of precise information, laws on privacy, etc. Because of the fact that globally complexity is quickly increasing, it will be increasingly more difficult to identify terror groups especially in ambiguous countries, i.e. those which harbour terrorists but are willing to close an eye. The problem with Western countries is that they are becoming more permissive and tolerant, leading to an overall erosion of social structure in favour of entropy. In underdeveloped countries it is almost impossible to create new social structure hence it is entropy that causes the increase of complexity. In the West, the more intricate social structure is being eroded by loss of moral values and relativism. The result? in both cases an increase in complexity. Following the above logic, we can state that:

  • High complexity is necessary (but not sufficient) to lead to terrorism.
  • Terrorism in an almost “obvious” consequence of a highly complex world.
  • The Principle of Incompatibility and terrorism are intimately linked.

Can complexity be used to anticipate conflicts, crises and failing states? The answer is affirmative. It is evident that a society/country in the proximity of its critical complexity is far more open to enter a state of conflict, such as civil war or simply declare war on a neighbouring country. The conditions that a society must satisfy in order to switch to a conflict mode are multiple. As history teaches, there is no established pattern. Many factors concur. But it is clear that it is more difficult to take a well-functioning and prosperous society to war than one which is fragile and dominated by entropy. In a society in which the entropy-saturated structure is eroded, the distance that separates a “peace mode” from a “conflict mode” is much smaller and switching is considerably easier. The idea, therefore, is to measure and track complexity region per region, country per country, and to keep an eye on those countries and regions where high complexity gradients are observed. Regions where complexity increases quickly are certainly candidates for social unrest or armed conflict. How can this be accomplished? What kind of data should be used? Good candidates are:

•    Birth-rate
•    Death-rate
•    Debt-external
•    Electricity-consumption
•    Electricity-production
•    Exports
•    GDP
•    GDP-per capita
•    GDP-real growth
•    Highways
•    Imports
•    Infant Mortality
•    Inflation rate
•    Internet users
•    Labour force
•    Life expectancy
•    Military expenses
•    Oil-consumption
•    Oil-production
•    Population
•    Telephones mobiles
•    Telephones-main lines
•    Total fertility rate
•    Unemployment rate
The list is of course incomplete, as there are hundreds of other indicators which must be taken into account. Based on historical data such as that listed above, Ontonix has conducted comprehensive analyses of the World’s complexity and its rate of growth. It has emerged that if the current trend is maintained, our global society shall reach criticality around 2045-2050. What does this mean? The high amount of complexity will make it extremely difficult to govern societies or to make decisions of political nature. Under similar conditions, self-inflicted extinction will be highly likely. Although from a global perspective, the World is still almost half a century away from its critical state, there are numerous regions of the World in which societies are nearly critical and extremely difficult to grow and govern. Many parts of Africa, the Middle East or South East Asia are just a few examples. But also Western democracies are in danger. Highly sophisticated and peaceful societies are increasingly fragile because of a rapid increase of rights, freedom, tolerance or relativism and decadence.

It is interesting to note how the global robustness of the world has dropped from 90% in 1980, to 82% in 2015. In the same period complexity has increased by over 500%! If the trend continues the World will reach its critical complexity around 2045-2050.

All ancient civilizations have collapsed. This is because due to a variety of reasons they reached their critical complexity and were unable to cope with the resulting fragility. Critical complexity becomes a severe liability for a species especially once it acquires powers more than sufficient for its self-destruction. Fragile civilizations are vulnerable and their most likely fate is collapse.

If we fail to cope with and, ultimately, move safely past criticality, there will be no second chance, no other civilization will take over. Clearly, the biological lifetime of our species is likely to be several million years, even if we do our worst, but as far as technological and social progress is concerned, that will essentially be it. Globalization of course accelerates the increase of complexity until criticality is reached. Critical complexity, on the other hand, is the hurdle that prevents evolution beyond self-inflicted extinction. Since none of the ancient (and not so ancient) civilizations have ever evolved beyond critical complexity – in fact, they’re all gone – they were all pre-critical civilizations. There has never been a post-critical civilization on Earth. The only one left that has a chance of becoming a post-critical one is of course ours. But what conditions must a civilization meet in order to transition beyond criticality? Essentially two. First, it must lay its hands on technology to actively manage complexity. Second, it must have enough time to employ it on a vast and global scale. Complexity management technology has been introduced by Ontonix in 2005. This leaves us with about 30-35 years.

Established originally in 2005 in the USA, Ontonix is a technology company headquartered in Como, Italy. The unusual technology and solutions developed by Ontonix focus on countering what most threatens safety, advanced products, critical infrastructures, or IT network security - the rapid growth of complexity. In 2007 the company received recognition by being selected as Gartner's Cool Vendor. What makes Ontonix different from all those companies and research centers who claim to manage complexity is that we have a complexity metric. This means that we MEASURE complexity. We detect anomalies in complex defense systems without using Machine Learning for one very good reason: our clients don’t have the luxury of multiple examples of failures necessary to teach software to recognize them. We identify anomalies without having seen them before. Sometimes, you must get it right the first and only time!

0 comments on “Is a Global Post-Critical Society Possible?

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: